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High-Speed Chaos in an Optical Feedback
System With Flexible Timescales

J. N. Blakely, Lucas Illing, and Daniel J. Gauthier

Abstract—We describe a new optoelectronic device with time-
delayed feedback that uses a Mach-Zehnder interferometer as pas-
sive nonlinearity and a semiconductor laser as a current-to-optical-
frequency converter. Band-limited feedback allows tuning of the
characteristic time scales of both the periodic and high dimensional
chaotic oscillations that can be generated with the device. Our im-
plementation of the device produces oscillations in the frequency
range of tens to hundreds of megahertz. We develop a model and
use it to explore the experimentally observed Andronov—Hopf bi-
furcation of the steady state and to estimate the dimension of the
chaotic attractor.

Index Terms—Bifurcation, chaos, delay effects, electrooptic de-
vices, feedback lasers, nonlinear differential equations, nonlinear
systems, optoelectronic devices.

I. INTRODUCTION

IME-DELAY systems are widely used as generators

of chaos in applications such as chaos communication
[11-[7] and chaos control [8]-{12]. Many of the experiments
conducted so far employed lasers with delayed feedback
[11-[6], [8}-[12], owing to the simplicity of implementation
and feasibility of extension to high-speed operation. De-
layed-feedback laser systems also have the potential to generate
very high-dimensional and complex chaotic dynamics [13]
and strategies for controlling fast chaos exist for these type of
systems [14].

In this paper, we describe a new fast optical time-delay feed-
back device with flexible dynamical timescales and complexity.
Adjusting the pass-band characteristics of the feedback loop al-
lows tuning of the characteristic time scale while the time delay
and the feedback strength control the complexity of the dy-
namics. The device belongs to the class of optical systems with
passive nonlinearity in the feedback loop (see Fig. 1). In our
device a Mach—Zehnder interferometer is the source of nonlin-
earity while the semiconductor laser that provides the optical
power acts as a linear current-to-optical-frequency converter.
The nonlinearity of the interferometer coupled with the delay in
the feedback loop combine to produce a range of steady-state,
periodic, and chaotic behavior.

The flexible timescale allows us to operate the device at mod-
erate speeds to perform detailed system characterization while
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Fig. 1. Schematic of the experimental setup. The device consists of a
voltage-controlled source, a passive nonlinearity, and a feedback loop with
bandpass characteristics. The components labeled A-L and details of the setup
are explained in the text.

it can be also operated at high speed for applications like chaos
communication and control of fast chaos. In this paper, we tune
the device to a moderate speed so that it generates dynamics
with frequencies of hundreds of megahertz. Another advantage
of the device is that the nonlinearity (interferometer) is easily ac-
cessible and tunable so that it can be reproduced and controlled
accurately, without involving the internal dynamics of semi-
conductor lasers as in other devices. Furthermore, this system
is constructed with relatively inexpensive components, making
it an economical choice as a chaotic optical source in future
applications.

A distinguishing feature of our device is that it uses an
ac-coupled amplifier in the feedback loop so that it has band-
pass characteristics. It can thus operate, in principle, in the RF
or microwave range using readily available components. This
contrasts previous research that used dc-coupled low-pass filter
components [15]-[17]. Time-delay dynamical systems with
bandpass filtering has only recently been investigated and has
the advantage that the bandwidth of the chaotic signal can be
tailored to fit the desired communication band [18], [19].

The goal of this paper is to present details about the exper-
imental implementation of our new device and to develop a
mode] that allows us to investigate the nonlinear dynamics of the
system. A thorough characterization of the system and a good
model are prerequisites for investigating applications such as
control of fast chaos, which will be reported elsewhere [14]. We
describe the experiment in Section II and develop a determin-
istic model for the device in Section III. Subsequently, we in-
vestigate in Section IV the Andronov-Hopf bifurcation of the

0018-9197/04$20.00 © 2004 IEEE

DiSTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited



300

steady state. Finally, we will present evidence that our opto-
electronic feedback system generates high-dimensional chaos
in Section V.

II. EXPERIMENTAL SETUP

In this section, we describe details of the experimental im-
plementation of the active laser interferometer with ac-coupled
feedback. The device consists of the laser, which acts a cur-
rent controlled source, the interferometer, which constitutes the
passive nonlinearity in the system, and the feedback loop with
bandpass characteristics. A schematic of the experimental setup
is shown in Fig. 1 where the labels A-L correspond to compo-
nents that we refer to and describe below.

The light source is an AlGalnP diode laser (A—Hitachi
HL6501MG, wavelength 0.65 pm) with a multiquantum-well
(MQW) structure. The diode is housed in a commercial mount
(B—Thorlabs TCLDM9Y) equipped with a bias-T for adding an
RF component to the injection current. Thermoelectric coolers
in the mount are connected to a proportional-integral-derivative
feedback controller (Thorlabs TEC2000) to provide 1-mK
temperature stability, thereby minimizing frequency and power
drift. The output light of the laser is collimated by a lens
(D—Thorlabs C230TM-B, f = 4.5 mm) producing an elliptical
beam (1 mm x 5 mm) with a maximum output power of 35 mW.

The passive nonlinearity in the experiment consists of a
Mach-Zehnder interferometer with unequal path lengths (path
difference 45 cm) into which the laser beam is directed. A
silicon photodetector (E—Hammamatsu S4751, dc-750-MHz
bandwidth, 15-V reverse bias) measures the intensity of light
emitted from one output port of the interferometer. The size of
the photodiode is much smaller than the width of the laser beam
so only a fraction of the interferometer’s output is detected.
The small detector size ensures that only one fringe appears
within the beam cross section, thus compensating for wavefront
aberrations and slight laser beam misalignment and improving
the fringe visibility. A neutral density filter is fixed to the front
of the laser mount, limiting the optical power reaching the
photodiode to prevent saturation.

The feedback-loop photodiode produces a current propor-
tional to the optical power falling on its surface. The current
flows through a 50-Q resistor. The voltage across that resistor
is transmitted down a coaxial cable (F—RU 58, total length
~327 cm). The signal emanating from the cable passes through
a low-noise, fixed-gain, ac-coupled amplifier (G—Mini-Cir-
cuits ZFL-1000LN, bandwidth 0.1-1000 MHz), a dc-blocking
chip capacitor (H—220 pF), an ac-coupled amplifier (K—Mini-
Circuits ZFL-1000GH, bandwidth 10-1200 MHz), and a second
dc-blocking chip capacitor (L—470 pF). The capacitors reduce
the loop gain at frequencies below ~7 MHz where a thermal
effect enhances the laser’s sensitivity to frequency modulation
[20], [21]. The resulting voltage is applied to the bias-T (B) in
the laser mount. The bias-T converts the signal into a current
and adds it to a dc injection current from a commercial laser
driver (C—Thorlabs LDC500).

The entire system is fixed on an optical table using short
(2-in) mounts for mechanical stability. This stability is ex-
tremely important as variation in the path length on the order
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of the wavelength of the laser light (0.65 pzm) produces sig-
nificant power variations at the output of the interferometer.
Furthermore, the entire apparatus is covered by an insulating
box to prevent thermal expansion or contraction of the mirror
mounts due to air currents.

III. MATHEMATIC MODEL OF THE OPTOELECTRONIC DEVICE

To obtain a model of the device, we consider in turn the rele-
vant physics of the laser diode, the Mach—Zehnder interferom-
eter, and the feedback loop components.

A. Source: Semiconductor Laser

The injection current applied to the laser diode is a combi-
nation of the dc-bias current and the high-frequency currents
due to the time-delayed output of the feedback loop. Modu-
lating semiconductor lasers by varying the input current results
primarily in changes of the laser frequency and, to a lesser ex-
tent, the laser power. One mechanism relating the input current
and frequency shifts is the change of carrier density in the laser
device as result of the modulation. A changed carrier density
shifts the refractive index of the material that makes up the laser
cavity and thereby changes the frequency of the lasing mode. A
second mechanism that leads to changes in the optical frequency
is a thermal effect that enhances frequency modulations below
~5 MHz by as much as a few orders of magnitude [20], [21].

If the pumping current is modulated at a rate significantly
slower than the gigahertz internal timescale typical for semicon-
ductor lasers, then the output power and frequency will adiabat-
ically follow the input so that they depend in a linear fashion on
the current when the laser is operated far above threshold.

To determine the main internal timescale of the laser dy-
namics in the absence of time-delay feedback, we determine its
relaxation oscillation frequency {1g by measuring the peak in
the power spectrum of the intensity noise using a high-speed
spectrum analyzer (Hewlett-Packard 8566B, 22-GHz band-
width). We find, as expected [22], that Q% o« i — 2, where
i is the dc-injection current and #;;, is the laser threshold
injection current. The relaxation oscillation frequency at the
nominal operating current of 75 mA used in the experiment is
Qg =2.7 GHz, and i, =40.7 mA.

Based on our measurements, we see that the laser will
adiabatically follow the injection current for frequencies much
less than ~2.5 GHz (bounded by 2g) and much greater than
~5 MHz (bounded by the enhanced frequency tuning due to
the thermal effect). Our feedback loop is bandpass-limited
to within this range and hence the laser can be modeled as
a voltage-controlled source, a linear device which converts
variations of the input voltage U (¢) that drives the input current
into corresponding oscillations of the optical frequency w(t)
and power P(t).

The model for the laser we propose is simply

Pi)y=rU(t)+ P m
w(t) =nU(t) + wo = g(P(t) — Py) +wp 2

where Py(wp) denote the emission power (the optical fre-
quency) of the steady state, U(t) is the voltage applied to the
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bias-T, and & and 7 are, respectively, the voltage-to-power and
voltage-to-frequency conversion strength.

We note that it is possible to obtain (1) and (2) from a di-
rect analysis of the standard rate equations describing semicon-
ductor laser dynamics [22] in the limit when the amplitude of the
injection current modulation is small in comparison to the dc-in-
jection current, which is appropriate for our device. For higher
frequency operation of the device, above Qg, the full semicon-
ductor laser rater equations would have to be used in place of (1)
and (2). Such high-frequency modulation can lead to nonlinear
phenomena such as period-doubling cascades, period tripling,
and chaos [23] when the modulation amplitude is large. We do
not consider further such behavior.

B. Passive Nonlinearity: Mach—Zehnder Interferometer

The passive nonlinearity in our system is an unequal-path
Mach-Zehnder interferometer that converts frequency varia-
tions of the light emitted by the laser into intensity variations at
the photodetector. The photocurrent produced by the detector is
converted into a voltage Vae:(¢) by a resistance r = 50 Q and
is subsequently amplified. The difference in propagation time
between the two paths of the interferometer is A, = 1.5 ns,
much smaller than the timescale of variation of the laser
injection current. Therefore, we can assume that the light waves
that reach the detector through the two different paths have the
same optical frequency. The voltage Vi is thus given by

Vaet(t) = yP(){1 + beos[w(t) A} 3)
where w(t) is the optical frequency. The parameter describes
the overall feedback strength which is determined by the frac-
tion of the power in the laser beam that actually falls onto the de-
tector, the sensitivity of the photodiode, and the electronic am-
plification of the signal. The parameter b € [0,1] is the fringe
visibility and is defined as

Pmax - Pmin

b= ————.
Pmax+Pmin

C))
The ideal situation where the light waves in the interferometer
are perfect plane waves and where the beamsplitters divide them
exactly in half corresponds to b = 1.

The optical frequency is related to the observed output power
by (2), which allows us to rewrite (3) as

Vaei(t) = 7P(8){1 + bsin[a(P(t) - Fo) + ¢]}. )

Here, the parameter @ = nA,/x and the constant offset ¢ =
weA; — /2 are tunable. By varying the dc component of the
injection current, we adjust ¢ to ~0. The constant parameter «
determines the sensitivity of the interferometer and can be tuned
by varying the path imbalance A;.

The useful range of path-length differences is limited by the
phase noise of the laser light, which is a consequence of the
quantum process of spontaneous emission. Increasing the sensi-
tivity of the interferometer by increasing the path difference pro-
portionally increases the effect of phase noise. We chose to set
the sensitivity to a value such that the amplitude of noise fluctu-
ations is less than 10% of Py, corresponding to & ~1.9 mW ™1,

S
T

IP@)-Pyl / &IV, | (uW/mV)

L Il 1 1
0 100 200
Frequency (MHz)

Fig. 2. Frequency response of the open-loop electronic feedback for a gain
value v =14.6 mV/mW. Circles denote experimental results and the line shows
the best fit of the theoretical model.

C. Electronic Feedback Loop

The electronic feedback loop connecting the detector and
diode laser introduces a time delay. The total round-trip delay
time 7 is somewhat larger than this time delay, because 7
includes, for instance, the free-space propagation time of
the laser light. However, for the purpose of modeling, we
may assume all processes to be instantaneous and assign the
total round-trip delay time to the propagation of the signal
through the feedback loop. The frequency-limiting effects of
the different components in the feedback loop are modeled by
a combination of single-pole low- and high-pass filters. The
feedback loop is described by

nV(t) = =V (t) + Vaes(t — 7) (6)
Um=—%?+Vm )

where () is the low-pass (high-pass) filter time constant,
Vier is the voltage output of the photodiode, and V and U are the
voltages at the output of the low- and high-pass filters, respec-
tively. The voltage U (¢) is used to generate the time-dependent
current that is injected into the laser diode. Low-pass filtering in
the experiment is provided by the limited bandwidth of the pho-
todiode and the electrical connections to the laser. High-pass
filtering is due to the two capacitors and the bias-T (see Fig. 1).
Using (1), we can rewrite (7) in terms of the laser output
power P(t) as
+ &V ().

P(t) = — @®)

P(t) - P
Th
We determine the parameters 7,7h,+ by measuring the
open-loop transfer characteristic of the electronic feedback
loop. A signal generator is connected in place of the photode-
tector so that a sinusoidal voltage Vi, of known amplitude
and frequency is injected into the opened feedback loop and
eventually into the laser. The optical power is measured directly
at the laser output. Fig. 2 shows the result of the experiment
and the best fit of the model [see (8) and (6) with Ve replaced
by £Vin, where ¢ is the electronic amplification] with parameter
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TABLE 1
DEFINITION OF SYMBOLS AND MEASURED
VALUES OF THE MODEL PARAMETERS

Symbol Value Description
T 0.66 + 0.05 ns Low-pass filter time constant
Th 22+ 05ns High-pass filter time constant
T 19.1 £ 0.l ns Feedback delay time
K (4.8 4 0.1) pW/mV | Modulation sensitivity
a 1.89 + 0.05 mW—! | Interferometer sensitivity
b 0.8 £+ 0.02 Fringe visibility
Py 26 + 0.5 mW Operating point optical power
v 0 - 18 mV/imW Feedback gain

values given in Table I. It is seen that the theoretical curve fits
to within a few percent of the experimental data everywhere
except in the region between 80-140 MHz. The dip in the
response is caused by either the bias-T or the electronics in the
commercial laser mount for which we do not have a detailed
circuit diagram.

Aside from this discrepancy, the simple model of the
feedback based on single-pole low- and high-pass filters fits
the experiment rather well. We choose to ignore the remaining
discrepancy because the model successfully reproduces most
features of the observed dynamics.

D. Full Model and Parameter Values

We obtain a full description of our optoelectronic device
by combining (6) and (8) with the expression relating the
detector voltage to the laser power, (5). All parameters in
this model can be measured and are displayed in Table I. The
only parameter that was not measured directly is the time
delay 7. Direct measurement of this parameter is complicated
by contributions of the several electronic components, each
of which introduces some unknown phase lag in addition to
simple propagation delay. So, we use the periodic dynamics
of the device to determine 7 more precisely. In Section IV, we
present evidence that the steady state becomes unstable through
an Andronov—Hopf bifurcation. The frequency of the resulting
periodic oscillation depends on the time delay 7, and we use
the experimentally measured frequency close to the bifurcation
point to improve the estimate of 7 that we obtain by measuring
the propagation delay of the feedback loop.

IV. FIRST INSTABILITY: ANDRONOV-HOPF BIFURCATION

Our optoelectronic time-delay feedback device can display
very complex dynamics. As parameters of the device are
changed, a series of different bifurcations results in a transition
from the initial steady-state behavior to chaotic dynamics.
In this section, we discuss the first such transition in which
the steady state becomes unstable and self-sustained periodic
oscillations arise.

We know of no exhaustive list of all possible ways that limit
cycles (periodic oscillations) can arise in time-delay systems.
However, for the well-known bifurcations of cycles (those that
already exist in two-dimensional (2-D) systems), this list ex-
ists, and by examining the scaling of the period and ampli-
tude near the bifurcation one can distinguish between the dif-
ferent bifurcation scenarios [24]. For instance, a supercritical
Andronov—Hopf bifurcation is characterized by an amplitude of
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Fig. 3. Oscillation amplitude measured at the second interferometer output
versus gain is shown for the experiment (triangles) and model (dots).

the stable limit cycle that scales as the square root of the distance
of the bifurcation parameter from the bifurcation point and an
oscillation period of finite size that is approximately constant as
the bifurcation parameter is varied.

To investigate the bifurcations in our device, we varied the
feedback gain -y, which serves as our main bifurcation param-
eter. A second bifurcation parameter of interest is the delay time
7. Experimentally we can change 7 by adding or subtracting
fixed lengths of coaxial cable to the feedback loop.

For gain values below a critical value v < ¢, the system is
in a steady state with fluctuations of the observed laser output
power due only to the inherent phase noise. When the gain is
increased through the critical value yo = 5.1£0.5 mV/mW for
T ~19.1 ns, the steady state is replaced by periodic oscillations.
The dominant frequency of the oscillation is 51.5+1 MHz,
which is roughly equal to 1/7. This frequency does not change
substantially as the gain is increased further. The oscillation
amplitude, on the other hand, grows smoothly from zero with
increasing gain, as shown in Fig. 3. The spontaneous emission
noise of the semiconductor laser leads to an amplification of the
amplitude variations (indicated by the larger error bars) close
to the bifurcation [25]. It is therefore not possible to pinpoint
the bifurcation point exactly and there is no clear /¥ — ¢
scaling of the amplitude, as expected for an Andronov—Hopf
bifurcation. Nevertheless, the smooth amplitude growth and
the finite period of the limit cycle at yZyc indicate a su-
percritical Andronov—Hopf bifurcation at yc. In the model,
which is noise-free, we find an Andronov-Hopf bifurcation at
Yo = 5.34 mV/mW.

Next, we experimentally determined the frequency of the
limit cycle close to the bifurcation point for different delay
times 7. In all cases, the steady state becomes unstable through
an Andronov-Hopf bifurcation. However, we find that the
relation f ~ 1/7 between the frequency f and the delay time
7 holds only for a limited range of 7. Fig. 4 summarizes the
relation between f and 7 that we obtain from experimental
(triangles) and numerically calculated (circles) time series. The
data suggest that the device transitions from a steady state to
limit cycle oscillations with frequencies roughly n/7, where
n =n(r)canbe 1,2,3,....
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Fig. 4. Frequency of the oscillations close to the Andronov—Hopf bifurcation
point versus the feedback delay time 7. Measured (triangles) and numerically
estimated (circles) frequencies are shown. We display curves n/7 with n =
1,2, 3,4 for visual guidance.

The origin of the fundamental frequency (n = 1) can be un-
derstood intuitively by considering whether a wave circulating
in the feedback loop will reinforce itself. If the feedback is pos-
itive, a wave will reinforce itself if an integer number of wave-
lengths equals the propagation length in the loop. If the feedback
gain is negative, the propagation length must be a half integer
number of wavelengths. In the experiment, we can achieve neg-
ative gain by tuning the offset ¢ in (5) such that ¢ ~ 7. For
this setup, we observe, as expected, f ~ 1/(27) for 7 ~19.1 ns
(data not shown).

The appearance of modes with n > 1 for larger delay times
7 is due to the fact that the gain in the feedback loop is not
perfectly flat over the passband. Thus, as the gain is increased
from a low level, one particular wavelength will first reach the
threshold where the gain in the loop balances the losses. In a
system with only low-pass feedback, the gain is highest at low
frequencies, so the mode with the lowest frequency is always
the one that becomes stable first, independent of the delay. On
the other hand, the high-pass filter introduces a bias toward
high frequencies. For each mode n, the frequency scales as
f ~ 771, This implies that the damping effect of the high-pass
filter on a particular mode becomes more pronounced with
increasing delay time 7. Finally, a higher order mode n > 1,
one that has a higher frequency for a given delay, will reach the
stability threshold first. This explains the different modes of
periodic oscillations observed in the experiment. In addition, it
follows from this argument that there exist specific delay times
for which two modes with different frequencies have equal
threshold gain ¢ (double Hopf point). However, since none of
the delay times used in the experiment are close to one of these
special 7, we do not consider further this case.

V. CHAOS

Beyond the Hopf bifurcation, successively more complex dy-
namics develops as the gain is increased, as shown in Fig. 5.
At feedback gains higher than the Andronov—Hopf bifurcation
point, the initially sinusoidal oscillations begin to square off,
as shown in Fig. 5(a). The square shape of the waveform re-
sults in prominent odd harmonics in the spectrum [Fig. 5(b)].
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Fig.5. Experimentally measured (a), (c), (¢) time series and (b), (d), (f) power
spectra obtained from the second output port of the interferometer are shown.
7 = 9.4 mV/mW for (a) and (b), v = 13.2 mV/mW for (c) and (d), and
v = 17.6 mV/mW for (e) and (f).

As the gain increases, a small, broad peak appears at about half
the fundamental frequency, as shown in Fig. 5(d). The peak at
roughly half the fundamental frequency is three orders of mag-
nitude below the fundamental. The weakness and broadness of
this peak coupled with the presence of phase noise may ex-
plain why no clearly period doubled behavior is apparent in the
time domain [Fig. 5(c)]. As the gain is increased further, the
broad background rises and the tall peaks at the fundamental fre-
quency and its harmonics weaken. The power spectrum for y =
17.6 mV/mW, shown in Fig. 5(f), is quite broad and the peaks
have nearly dropped to the level of background which has risen
significantly above the noise floor (2x 10~2 mW2/MHz? mea-
sured just below the Andronov—Hopf bifurcation point). This is
indicative of high dimensional chaos in the system.

A similar very broad and featureless power spectrum in the
chaotic regime for an optical system with passive nonlinearity
and bandpass feedback was reported in [18]. There, the authors
synchronize two devices and successfully communicate infor-
mation, thus demonstrating that the cause of the broad-band
spectrum is deterministic chaos. Because of the similarity of
their device to ours, we believe that the observed complex be-
havior for large gain values shown in Fig. 5(e) is due to chaotic
deterministic dynamics.

To support this claim we show in Fig. 6 time series and power
spectra obtained by numerical simulation of the deterministic
model.! The match with the experimental data is good, as can
be seen by comparing Fig. 5 to Fig. 6, despite the simplicity of
the model and the uncertainty in the estimation of the parame-
ters. Fig. 6 also shows Poincaré sections obtained by recording
the location where the trajectory unidirectionally crosses the
plane V() = +F; in the three-dimensional space spanned by
(V(@), P(t), P(t — A)) with A < 7. The simulations confirm
that the system is on a limit cycle for v = 9.4 mV/mW, which
is clear from the power spectrum [Fig. 6(b)] and immediately
obvious in the Poincaré section [Fig. 6(c)]. They also show that
the limit cycle bifurcates to a torus-attractor for increased gain

ITime series from the model are obtained using an Adams-Bashforth-
Moulton predictor-corrector algorithm.
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Fig. 6. Numerical (a), (d), (g) time series, (b}, (e), (h) power spectra, and (c),
(f), (i) Poincaré sections are shown. The gain values are as in Fig. 5, that is, v =
9.4 mV/mW for (a)-(c), ¥ = 13.2 mV/mW (d)~(f), and v = 17.6 mV/mW

(g)-(0).

(v = 13.2 mV/mW) appearing as closed curve in the Poincaré
section [Fig. 6(f)]. The power spectrum [Fig. 6(e)] exhibits a
comb-like structure due to the two incommensurate frequencies
of the quasi-periodic oscillation. Note that there is not only a
strong peak at ~26.6 MHz, roughly half the fundamental fre-
quency, but a definite peak at 1.8 MHz. This is well below the
3-dB cutoff point of the high-pass filter. At present, we do not
understand the origin of this low-frequency feature and cannot
explain why the main new frequency component should be so
close to one half the fundamental frequency. For even larger
gains the system is chaotic, with a very broad-band spectrum
[Fig. 6(h)] and no discernible structure in the Poincaré section
[Fig. 6(i)]. We computed the spectrum of Lyapunov exponents
for the model with v = 17.6 mV/mW and find that the largest
few exponents are positive (details on the computation of the
Lyapunov spectrum can be found in [26]). This proves that the
model dynamics shown in Fig. 6(g) are on a chaotic attractor. We
estimate the attractor’s Lyapunov dimension to be Dy, ~ 22.

In this section, we have presented evidence that our device
exhibits high dimensional chaos. We showed that the device un-
dergoes a sequence of bifurcations from steady state to aperi-
odic oscillations with a broad and featureless power spectrum.
We were able to reproduce this behavior with the determin-
istic model and we quantified the dimensionality of the chaotic
attractor.

VI. SUMMARY AND DISCUSSION

We describe an optical feedback device that can produce
high-dimensional chaos and that allows adjustment of the
characteristic timescales of the oscillations by changing the
bandpass characteristics in the feedback loop. The nonlinearity
in the device is accessible and reproducible. We develop a
simple model that allows quantitative predictions about the
behavior of the physical device and use it to determine the
critical gain and frequency of the Andronov—Hopf bifurcation
of the steady state. We observe that the device transitions to
chaos with a very broad-band frequency spectrum and find that
this matches the model behavior.
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We find that the inclusion of a high-pass filter significantly
changes the qualitative dynamics of optical feedback systems
with passive nonlinearity in comparison to only low-pass fil-
tering as in the Ikeda system [13]. Bandpass feedback allows
not only “fundamental” frequencies f ~ (27)~! but oscilla-
tions with f ~ 7~! become possible. The route to chaos is ap-
parently changed when the feedback of dc-signals is blocked.
That is, we do not observe a period-doubling route to chaos but
a more complicated transition, the details of which are not yet
fully understood.

This chaotic optoelectronic device is ideally suited for both
experimental investigation of fast nonlinear dynamics and tech-
nological application of high-speed chaos. For example, we use
it to investigate control of fast chaos and are able to successfully
stabilize a periodic orbit with a period of 12 ns, which is faster
than any reported [27]. This work will be described in a later
paper [14]. Also, by adjusting the timescale of the oscillation,
the device could be made to oscillate at gigahertz frequencies
suitable for use in a practical chaos communication system.
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